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THE BRIDGE BETWEEN PRECIPITATION AND TEMPERATURE – PRESSURE 1 

CHANGE EVENTS: MODELING FUTURE NON-STATIONARY PRECIPITATION 2 
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Abstract 4 

Anthropogenic warming may change precipitation patterns, impacting infrastructure performance and 5 

reliability. Future precipitation statistics generated using General Circulation Models (GCM) are, 6 

however, often biased and not easily applied to problems such as runoff estimation. Stochastic weather 7 

generation is hence used as an alternative to GCMs in hydrology and hydraulic modelling. This paper 8 

explores the dependence of fine temporal precipitation characteristics on air pressure and air temperature 9 

using historic observations. The goal is to develop, based on the key causes of precipitation, a 10 

climatological basis for a stochastic precipitation generator for non-stationary precipitation under climate 11 

change conditions. The analysis focuses on precipitation in the urban Northeast United States and utilizes 12 

pooled observations from meteorological stations in New York City, Philadelphia, and Boston over 60 13 

years. A negative correlation between hourly Probability of Precipitation (POP) and air pressure is 14 

observed. When the historical records are discretized using air Pressure Change Events (PCE), Decreasing 15 

Pressure Change Events (DePCEs) had a higher POP and a higher Precipitation Depth (PD) than 16 

Increasing Pressure Change Events (InPCEs). Temperature was more strongly associated with PD during 17 

DePCEs than InPCEs; this association was more pronounced during high magnitude PCEs and extreme 18 
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events. The potential for simulating future hourly precipitation by associating historic hourly 19 

precipitation patterns with PCE’s and monthly temperature is assessed.  20 

Key words: precipitation analysis, weather type categorization, GCM temperature, hourly precipitation, 21 

average monthly temperature, pressure change event, probability of precipitation, extreme event 22 
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1. Introduction 23 

Global climate variability and change is largely caused by modifications to the global energy and water 24 

cycles. To improve our ability to adapt to precipitation changes under global warming (Trenberth, Dai et 25 

al. 2003), research is necessary to characterize the relationship between precipitation and temperature 26 

(Trenberth 1998, Trenberth, Dai et al. 2003, Allan and Soden 2007, Neiman., Ralph. et al. 2008, Lenderink 27 

and van Meijgaard 2010).  This relationship is complex, as it varies over space and time. Although 28 

General Circulation Models (GCMs) can generally investigate coarser temporal scales (e.g. annual or 29 

decadal) in larger geographic areas (e.g. Northeast US, global), more uncertainties are observed at smaller 30 

temporal and spatial scales, since local climate is also influenced by local geography, land cover, and 31 

related circulation patterns (Mitchell, Johns et al. 1999, Räisänen 2001, Zveryaev and Allan 2005, 32 

Sorteberg and KvamstØ 2006). 33 

Researchers have tried to link these two factors using physical and atmospheric explanations. For 34 

example, Trenberth, Dai et al. (2003) suggested that through convection, the moisture required for 35 

precipitation is drawn from an area of atmosphere that is about four times the rainy area. A 7% increase 36 

in air moisture holding per degree of warming at the local level has been used to imply a similar rate of 37 

global precipitation change, based on the Clausius–Clapeyron relation (Trenberth and Shea 2005, Sun, 38 

Solomon et al. 2007). Other studies investigate this relationship at different time scales, from monthly 39 

(Trenberth and Shea 2005, King, Klingaman et al. 2014) to daily (Sun, Solomon et al. 2007, Westra, 40 

Alexander et al. 2013) and sub-daily (Lenderink and van Meijgaard 2008, Lenderink and van Meijgaard 41 

2010); still others explore this relationship based on differences in precipitation patterns, looking at means 42 

(Allen and Ingram 2002, Trenberth 2011), extremes (Groisman, Knight et al. 2005, Meehl, Arblaster et al. 43 

2005, Shaw, Royem et al. 2011, Meehl, Washington et al. 2012, Kunkel, Karl et al. 2013), and events of 44 

varying durations (Panthou, Mailhot et al. 2014, Wasko, Sharma et al. 2015). 45 
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For example, Madden and Williams (1978) found a frequent negative correlation between precipitation 46 

and summer air temperature at time scales ranging from inter-annual to multi-decadal in the contiguous 47 

United States and Europe. Zhao and Khalil (1993) confirmed a similar negative correlation in the summer, 48 

after exploring monthly data of the contiguous United States from 1905 to 1984. However, on days with 49 

mean daily temperatures in excess of 12 °C, Lenderink and van Meijgaard (2008) found that the 50 

probability of one-hour precipitation extremes in De Bilt, Netherlands increased much faster than the 51 

Clausius–Clapeyron relation suggests, extending this finding to larger European simulations.     52 

In general, projections from GCMs are used to interpret the relationship between precipitation and 53 

temperature at coarser temporal scales (e.g. annual or decadal) under climate change scenarios when 54 

considering larger geographic areas (e.g. Northeast US, global). Yet, precipitation datasets at fine time 55 

scales (e.g. hourly or sub-hourly) are required to study the potential impacts of climate change on water 56 

resource management, urban hydrology, and agriculture. For example, one of the two primary causes of 57 

runoff is Hortonian excess precipitation, whereby runoff is generated instantaneously whenever the 58 

intensity of precipitation exceeds the infiltration capacity of the land surface. To assess whether 59 

precipitation will be more intense under climate change, and possibly increase runoff generation, 60 

precipitation sequences downscaled from GCM projections are needed at fine temporal scales. Despite 61 

the dynamic methods used by Regional Climate Models (RCMs), stochastic precipitation generators, 62 

based on downscaled GCM projections, have been developed as an alternative (Fowler, Blenkinsop et al. 63 

2007, Wilks 2010) and used extensively for flood risk management (Haberlandt, von Eschenbach et al. 64 

2008), sizing reliable rainwater harvesting systems (Basinger, Montalto et al. 2010), and other water 65 

resource management tasks (Shamir, Megdal et al. 2015). Stochastic precipitation generators create long 66 

continuous Markovian sequences of precipitation through a variety of methods (Wilks and Wilby 1999). 67 

One technique for sequence generation uses samples from parameterized statistical distributions of wet-68 

day rain volume (Stern and Coe 1984, Wilks 1998), arrival and cell conditions intensity and duration 69 
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(Rodriguez-Iturbe, Cox et al. 1987, Rodriguez-Iturbe, Cox et al. 1988, Wasko, Pui et al. 2015, Wasko and 70 

Sharma 2017), and event characteristics (Heneker, Lambert et al. 2001); another relies on non-71 

parametrically sampling historical observations (Lall, Rajagopalan et al. 1996, Lall and Sharma 1996, 72 

Sharma and Lall 1999, Basinger, Montalto et al. 2010) with a moving window to preserve seasonality 73 

(Rajagopalan, Lall et al. 1996).  74 

The quality of downscaled GCM precipitation datasets is contingent upon accurate temperature 75 

predictions and a strategy for minimizing prediction bias (Johnson and Sharma 2009, Johnson and 76 

Sharma 2012). Researchers found that pressure and temperature have the most agreement across the 77 

GCMs (Johnson and Sharma 2009), while precipitation has the least consensus(Kendon, Rowell et al. 2008, 78 

Johnson and Sharma 2009) . A better understanding of the relationship between precipitation and 79 

temperature is necessary to increase confidence in precipitation projections derived from other GCM 80 

projections, such as monthly temperature.   81 

This paper explores how fine temporal scale (e.g. hourly) precipitation patterns are related to coarser 82 

temporal scale (e.g. average monthly) temperature. The physical causes of precipitation in a free 83 

atmosphere system are discussed first. Next, an investigation into the relationship of air pressure and 84 

precipitation is explored both at hourly time steps, and on an event basis. This analysis is then extended 85 

to examine how event based precipitation characteristics are impacted by Average Monthly Temperature 86 

(AMT). The results are used to discuss the potential development of a new stochastic precipitation 87 

generator that produces synthetic hourly precipitation time series by non-parametrically resampling 88 

historical observations, informed by GCM projections of AMT, among other variables.  89 
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2. Mechanisms of Precipitation  90 

One of the key causes of precipitation is the condensation of air that ascends as it moves laterally over 91 

irregular terrain (orographic lifting) or is physically displaced by atmospheric phenomena (e.g. via frontal 92 

lifting)  (Bjerknes and Kristiania 1922). Condensed moisture then falls to the ground as precipitation after 93 

drops coalesce enough to overcome the forces of drag (Ahrens, Jackson et al. 2012).  94 

In a free atmosphere, the primary cause of condensation is the displacement of air masses (Bjerknes and 95 

Kristiania 1922). The earliest researcher describing precipitation generated from the frontal movement of 96 

air masses was Bjerknes and Kristiania (1923), who studied atmospheric circulation patterns. There are 97 

three main categories of frontal precipitation (Bjerknes and Kristiania 1922, Bjerknes and Kristiania 1923): 98 

(1) A cold front forms when cold, dry stable air masses lift and replace relatively unstable, warm, moist 99 

air masses previously found near the land surface. Typically, the cold air moves from the northwest to 100 

southeast direction in the northern hemisphere. The cold air forces its way under the warm air, which is 101 

then convected upward, where it cools, condenses, and coalesces, often causing short-duration, high-102 

intensity precipitation. (2) By contrast, a warm front is formed by the advance of a warm moist air mass 103 

and the simultaneous slow retreat of cold dry air. Most commonly, warm air moves from the southeast to 104 

the northwest in the northern hemisphere. Since warm air has a lower density, it rolls up and over the 105 

cold air and can cause light to moderate precipitation over a large geographic area. (3) Occludal fronts 106 

occur when cold and warm fronts collide, causing a cyclone with low pressure in the joint area. Occludal 107 

fronts typically move to the northeast, and cause synoptic (because both warm and cold fronts are 108 

present) precipitation over large land areas. Figure 1 graphically illustrates the three types of fronts.  109 
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 110 

Figure 1 Air mass front types (the numbers in plot indicate temperature in Fahrenheit) (a) Cold front, 111 

blue arrows indicate the direction of movement, (b) Warm front, red semi-cycles indicate the direction 112 

of movement, (c) Occludal front, purple arrows and semi-cycles show the direction of move, both cold 113 

front and warm front move counter-clockwise and produce low pressure region in the joint area. 114 

(Urbana-Champaign 2010) 115 

Ahrens, Jackson et al. (2012) summarized general relationships between precipitation, temperature, and 116 

pressure for each of the three types of fronts (Table 1). Note that the trends in temperature changes are 117 

not consistent for all front types, especially for the Occludal front, which makes it difficult to develop a 118 

direct relationship between temperature and precipitation. However, when air is lifted by any of the three 119 

different frontal mechanisms, air pressure at the ground surface is consistently reduced (Hughes and 120 

Mayes 2014). This phenomenon is well-documented at the synoptic scale, as a result of frontal 121 

precipitation (Urbana-Champaign 2010). At the local or meso-scale, Hoxit, Chappell et al. (1976) found 122 

that surface pressure dropped due to the formation of convective clouds, triggering showery storms. The 123 

magnitude of the pressure drop is associated with the type of air mass movement at the synoptic scale or 124 

with the extent of the surface heating imbalance at the meso-scale, suggesting that in both cases pressure 125 

changes may provide a potential physical link between precipitation and seasonal variable frontal 126 

movements, related to AMT and atmosphere stability.  127 

  128 
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Before Passing While Passing After Passing 

Temperature warm sudden drop steadily dropping 

Pressure falling steadily minimum, then sharp rise rising steadily 

Precipitation short period of showers 
heavy rains, sometimes with 

hail, thunder and lightning 
showers then clearing 

(a) 

Before Passing While Passing After Passing 

Temperature cool-cold, slow warming steady rise warmer, then steady 

Pressure usually falling leveling off slight rise, followed by fall 

Precipitation 
light-to-moderate rain, 

snow, sleet, or drizzle 
drizzle or none 

usually none, sometimes light 

rain or showers 

(b) 

Before Passing While Passing After Passing 

Temperature 

• Cold occluded 

• Warm occluded 

Cold or cool  

Cold 

Dropping 

Rising  

Colder 

Milder  

Pressure Usually falling Low point Usually rising 

Precipitation 
Light, moderate, or 

heavy precipitation 

Light, moderate, or heavy 

continuous precipitation or 

showers 

Light-to-moderate 

precipitation followed by 

general clearing 

(c) 

Table 1 Climate characteristic effect of three front types  a) Cold front, b) Warm front, c) Occludal front 129 

(Urbana-Champaign 2010) 130 

3. Data and Methods 131 

3.1 Data 132 

The analysis focuses on the northeastern coastal United States, a region extending from Philadelphia to 133 

Boston, and characterized by plains with no high mountains. In this region, other than the general surface 134 

heating mechanism for local summer storms, the vertical movement of air masses is typically associated 135 

with frontal precipitation, rather than orographic lifting. Studies describing the relationship between 136 

precipitation and temperature (Lenderink and van Meijgaard 2010, Shaw, Royem et al. 2011, Panthou, 137 

Mailhot et al. 2014, Wasko and Sharma 2017) use data from many locations to prove the geographical 138 

representative of their statistics. However, the physical mechanism of precipitation formation in this 139 

study area has been observed in many other locations around the world (Hoxit, Chappell et al. 1976, 140 
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Knupp and Cotton 1985, Neiman., Ralph. et al. 2008, Adams-Selin and Johnson 2010, Ahrens 2012, Dawn 141 

and Mandal 2014, Houze, Rasmussen et al. 2015). The data used in this study includes hourly 142 

observations of temperature, sea level air pressure, and precipitation from the international airports in 143 

New York City, Philadelphia and Boston from 1948 to 2011.   144 

Since the topography and climate across the region are known to be similar, data from the three cities, 145 

spanning over a distance of 480 km, are pooled for this analysis. More frequent extreme precipitation in 146 

the future has been projected for this region by other researchers (Hayhoe, Wake et al. 2008, Demaria, 147 

Palmer et al. 2016, USGCRP 2017). The pooling increases the number of data points that can be used in 148 

the analysis, especially for the extremes.  149 

Because 1.04% of all time steps in the historical data contains some gaps, (i.e. missing data, cumulative 150 

period with no detailed information, the time-interval of observation is longer than one hour for several 151 

decades, etc.), an interpolation method is developed to fill in the missing data points for gaps less than 24 152 

hours. A moving average method, with a window width of a single day, is used to smooth out gaps of 153 

less than six hours (1.03%). For gaps between six hours and 24 hours (0.01%), a 2nd harmonic function is 154 

fitted to the values of the dry days (all gaps are treated as dry), with a length of one week (adjustable) 155 

centered on the day of interest and adjusted to match the values of the gap’s end points. Then, using this 156 

adjusted harmonic function, the gaps were filled with values that mimic the general change pattern for 157 

the neighboring days and which connect smoothly to the observed data. Figure 2 illustrates a sample of 158 

such a case. This method is applied on both temperature and air pressure. Where longer gaps (greater 159 

than 24 hours) were evident, data was eliminated from the analysis.   160 
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 161 

Figure 2 Sample of missing data filling 162 

3.2 Methods 163 

Because the movement of air masses is typically associated with pressure changes, the first step in the 164 

analysis was to investigate the pressure changes associated with precipitation. For the purposes of this 165 

paper, both pressure change and precipitation were investigated on an event basis. Precipitation events 166 

were defined by an Inter-Event Dry Period (IntEDP). Based on Restrepo-Posada and Eagleson (1982), 167 

IntEDP follows an exponential distribution for which the mean equals the standard deviation, or 168 

Coefficient of Variation (CV) of unity. However, the historic IntEDP is affected by extreme events, which 169 

dramatically affect calculations of the CV. In Figure 3, the CV for each city is calculated and plotted based 170 

on IntEDP quantile thresholds of 95%, 98%, 99%, 99.5% and 100%. An IntEDP beyond each threshold is 171 

not included in the calculations. Based on the results, the CV is sensitive to the extreme events in the 172 

distribution tail (e.g. the 100% results are far from 99.5% results, especially for the short IntEDPs). To 173 

avoid the influence of these low-frequency events (e.g. 0.5% for 99.5% quantile threshold), this paper uses 174 

99.5% as the quantile threshold to determine the minimum IntEDP, which is four hours for all cities 175 

(Figure 3). 176 
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 177 

Figure 3 Analysis of IntEDP, black horizontal solid line (CV of unity), red vertical dash line (4 hour 178 

IntEDP)  179 

A Pressure Change Event (PCE) is defined using de-seasonalized air pressure. De-seasonalized air 180 

pressure is the change in air pressure over a 24-hour period, as shown in the following equation.  181 

�′(�) = �(�) − �(� − 24) 182 

Where P(t) is the actual air pressure on hour t, P’(t) is the de-seasonalized air pressure on hour t. Two 183 

different types of PCEs are possible, as shown conceptually in Figure 4. The horizontal axis represents 184 

time, while vertical axis represents the change in air pressure over 24 hours, i.e. the de-seasonalized air 185 

pressure series. The shaded areas above the horizontal axis are defined as an Increasing Pressure Change 186 

Events (InPCEs) because the air pressure increases over time. The shaded areas below the horizontal axis 187 

are defined as Decreasing Pressure Change Events (DePCEs), because air pressure decreases with time. 188 

The local maxima and minima in the figure indicate the greatest positive and negative 24-hour changes in 189 

pressure, respectively. As shown in Figure 4, each PCE, increasing or decreasing, is bracketed by time 190 

points of stable pressure (e.g. no change over 24 hours). Using the data in this study, InPCEs correspond 191 
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to Event Pressure Changes (EPC) from 0 to 1100 hPa; DePCE EPCs range from -1200 to 0 hPa. EPC is 192 

defined as the cumulative air pressure change within a PCE. The sample sizes of PCEs for BOS, NYC and 193 

PHL were, respectively, 11564, 7147 and 8511. Based on the meteorology finding described in Table 1, 194 

precipitation is hypothesized to occur more frequently during DePCEs.  195 

 196 

Figure 4 PCE definition 197 

Next, the relationships between historical hourly precipitation and air pressure were explored. An 198 

exploratory analysis was performed to determine whether air pressure is related to precipitation across 199 

the study area. Hourly Probabilities of Precipitation (POPs) over the full air pressure range for a year and 200 

each month were explored graphically. Then, the association between precipitation occurrence and 201 

pressure change was qualitatively investigated on an event basis. Historical observations were 202 

specifically inspected for coincidences of DePCEs and precipitation. An EPC histogram of both rainy and 203 

non-rainy PCEs was plotted to explore whether precipitation is more frequently triggered during DePCEs. 204 

The association between precipitation and EPC was then further analyzed and quantified in terms of PCE 205 

Precipitation Depth (PD) and PCE POP, with both computed from the total number of rainy PCEs.   206 
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For the association between precipitation and PCE to be applicable under climate change conditions, it is 207 

hypothesized that atmosphere stability, PCE POP, and PCE PD must be dependents of AMT. To test this 208 

theory, the frequency of PCEs is graphically inspected to interpret the stability of atmospheric system 209 

under different AMT conditions. By importing AMT information, the seasonality, corresponding PD, and 210 

POP of different PCE types is explored. To bridge precipitation and AMT, heatmaps and contours of PCE 211 

POP were overlaid with AMT for different half-years (Jan – June and July – Dec); different PCE PD 212 

percentiles were also investigated against AMT under different EPC magnitudes and seasons. 213 

4. Results and Discussion 214 

Figure 5 displays POP associated with different air pressures for LaGuardia International Airport (NYC) 215 

at an hourly time scale. POP in this chart refers to the probability of any form of precipitation. At the top 216 

of the chart is the POP versus hourly air pressure for the full data set. Below, POP is broken down by 217 

month. The figure indicates that POP is negatively correlated to the hourly air pressure, irrespective of 218 

month. However, during July, August, and September, this trend is less pronounced than during other 219 

months. This trend is likely because 1) the air system is relatively stable in summer, with less variability 220 

in air pressure, and 2) summertime convection storms are often highly localized and may not pass over 221 

the climate station, even it is in the tributary area of the storm’s convection. The same trends and 222 

phenomena were also found in Boston and Philadelphia (Figures not shown).  223 
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224 
Figure 5 POP on hourly air pressure in NYC LaGuardia International Airport (the local regressions are 225 

indicated by the blue lines) 226 

Figure 6 shows a sample sequence of alternating PCEs (shaded area) and the associated hyetographs (red 227 

bars) and 24-hour-smoothed temperature (green line). This graph illustrates that precipitation is generally 228 

associated with the DePCEs, which supports the trends illustrated in Table 1 (i.e. that frontal precipitation 229 

is successive to pressure fall).  230 
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Histograms describing all pooled PCEs (red) and all rain-triggering PCEs (green) are shown in Figure 7. 231 

The rain-triggering PCEs are defined as those PCEs whose durations overlap with the beginning of a 232 

precipitation event. The histogram of the full sample of all PCEs is similar to a normal distribution, with a 233 

mean near zero. The distribution of rain-triggering PCEs is, however, skewed to the left and is 234 

discontinuous at the vertical axis (in the negative range). The left-skewness is consistent with the 235 

meteorological interpretation that as air masses are vertically lifted, negative changes in pressure are 236 

associated with precipitation events. The discontinuity in the distribution could indicate the presence of 237 

two different types of fronts. Cold fronts lift warm air rapidly, generating precipitation over relatively 238 

small geographic areas very soon after the pressure drops. Because POP in the negative region of Figure 7 239 

is higher, it may be that these events correspond to cold-front storms. Alternatively, the smaller POP 240 

under positive EPC may correspond to warm-front storms, since warm-front storms usually affect a large 241 

region ahead of the front. For this reason, precipitation correlated with InPCE has a lower POP.  242 

 243 
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 244 

Figure 6 PCEs and precipitation from 1994-11-01 to 1995-1-10 in BOS  245 

 246 

Figure 7 Kernel density of EPC for rain triggered PCEs (green) and all PCEs (red) 247 
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The POP and PD associated with EPCs are depicted graphically in Figure 8. A local fit line using loess 248 

method (Cleveland, Grosse et al. 1992) is used to highlight the correlation between POP and EPC.  Note, 249 

the density plot in the lower chart reflects only the distribution of the rainy PCEs, as all dry PCEs are all 250 

laying atop the x axis (PD = 0 mm). Two distinct PCEs are divided by EPC = 0 hPa. As the absolute value 251 

of an EPC increases, the POP of DePCEs increases from 15% to 100% within 0 ~ -300 hPa, while InPCE 252 

POP increases only from 15% to about 40% within 0 ~ 820 hPa. Given that the sample size of intensive 253 

InPCEs is limited (n = 79 when EPC > 820 hPa), less confidence is associated with the POP beyond 820 254 

hPa. Falling pressure appears to be a better indicator of precipitation than increasing pressure. The 255 

highest PCE occurrence occurs at EPC values of approximately -250 hPa and PD of 20 mm. These ranges 256 

are consistent with the histogram shown in Figure 7. Similar to POP, the trend of PD versus EPC can also 257 

be divided by PCE types. For DePCEs, the PD increases along with the EPC magnitude, while for InPCEs, 258 

EPC magnitude reduces PD. Physically, InPCE appears in a stable atmosphere, which does not benefit air 259 

mass lifting and so lacks the moisture supply necessary to intensify the precipitation process as DePCE 260 

does. 261 
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 262 
Figure 8 Relationship between PD and POP vs. EPC 263 

Bjerknes and Kristiania (1923) reported that the average lifetime of an air circulation system was 5.5 days, 264 

a period that was similar in duration to the average 5.7 days of precipitation events reported in 1909 by 265 

Defant (1921). It suggests that occurrence of air circulation and its corresponding air pressure change 266 

could be treated as an indicator of atmosphere stability, especially for moderate and intensive events. 267 

Since precipitation is formed due to atmospheric instability, it is important to evaluate the impact of 268 

temperature on the atmospheric system. The monthly frequency of moderate and intensive PCEs 269 
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(absolute value of EPC > 90 hPa) is plotted in two half-years against AMT in Figure 9, with a local 270 

regression line in blue. An obvious negative relationship when AMT > 0°C can be seen for both half-years. 271 

Atmospheric systems are more stable when the weather gets cold (AMT < 0°C). This illustrates that the 272 

atmospheric system stability, indicated by monthly frequency of moderate and intensive PCEs, is a 273 

function of AMT, one of the GCM outputs. It should be noted that even though the occurrence becomes 274 

low, individually PCE in high temperature is generally more intensive than low temperature.  275 

 276 
Figure 9 Association between monthly PCE frequency and AMT with local regression line (blue) 277 

To further investigate the impact of AMT on PCE and its associated precipitation characteristics, Figure 278 

10 and 10 present the PD and POP for two halves of the year, indexed by AMT.  279 

The relationship between PD and AMT is contoured by frequency in Figure 10 for both InPCEs and 280 

DePCEs. Two seasonal systems (centroids), winter and summer, are visible for both PCE types. The 281 



20 

 

summer system is concentrated around 8 mm for DePCEs and 6 mm for InPCEs (both centroids near 282 

22°C). The difference of PD between DePCE and InPCE in summer is not pronounced since precipitation 283 

tends to be localized in the relatively stable atmospheric system, as implied by the narrow variance of air 284 

pressure. However, the opposite is true for winter system. The winter system is centered around 17.5 mm 285 

for DePCEs and 2.5 mm for InPCEs (both centroids near 2.2°C). This indicates that DePCE has a larger 286 

geographical scale effect on winter storms. The magnitude of this difference fades out as the AMT grows 287 

from winter to summer. The change in PD between winter and summer is +3.5 mm for InPCEs and -8.5 288 

for DePCEs. These differences are largely due to the seasonality of precipitation formation, with large-289 

scale, frontal mechanisms dominating in winter, and local air convection dominating in summer. 290 

Figure 11 illustrates the POP of both PCE types under different AMT conditions. The POP of DePCEs is 291 

generally higher than of InPCEs which is coincided with Figure 7 and Figure 8. For DePCEs, during both 292 

halves of a year, POP is roughly level, oscillating between 55% and 65% with some small differences in 293 

the tail regions (e.g. high and low end of AMT range). The small POP during low temperatures in the 294 

second half of the year (Jul~Dec) is not reliable, due to a limited sample size (n = 9 for both InPCEs and 295 

DePCEs). However, during high temperatures, the POP decreases about 10%. This could be another 296 

impact of meso-scale summer convection storms, which generally have a tributary area much larger than 297 

the area of precipitation (Hoxit, Chappell et al. 1976, Hoxit, Chappell et al. 1976). Given that the data in 298 

the study is only from three airports, it is very likely these areas contribute to convections forming storms 299 

elsewhere. For InPCEs, during both year halves, the POP indicated is approximately 25% at the lowest 300 

temperatures and 35% at the highest. Between Jan and Jun, POP gradually rises to 35 % between 4°C and 301 

10°C, while during Jul and Dec, the increase in POP is delayed until the temperature increases from 20°C 302 

to 26°C. This observation suggests that the precipitation / pressure dynamics in the fall and spring differ 303 

somewhat from one another, although both have a similar temperature range (6°C).  304 



21 

 

The PD of spring and fall are difficult to differentiate in Figure 10, since their AMTs overlap. Similar POP 305 

values are shown in Figure 11 for DePCEs, though the temperatures at which POP increases for InPCEs 306 

are slightly different. The increase in POP could be caused by warm-front frequency under different 307 

AMTs. Since warm air masses generally move to the north in spring, it is reasonable to expect stronger 308 

warm-front storms in spring than in the fall.  309 

 310 

 311 

Figure 10 PD of different PCE types on AMT (red: DePCE, green: InPCE) 312 
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 313 

Figure 11 POP of different PCE types on AMT in different half years (red: DePCE, green: InPCE) 314 

This analysis suggests that high POP in this geographical region is associated both with low absolute 315 

pressure and with DePCEs. It also indicates that PCE could serve as a potential link between AMT and 316 

POP. This relationship is plotted in Figure 12 in terms of POP and PCE against AMT, with break points in 317 

the middle of a year. POP ranges from 0% (tan) to 100% (light blue).  Generally, POP is higher in DePCEs 318 

for the entire year. As indicated by the contours of the local regression, POP for DePCEs is highest when 319 

EPC is near -800 hPa, regardless of the time of year. Between July and December, POP increases as 320 

temperatures decrease. For InPCEs, EPC magnitude is positively correlated to POP, though this 321 

correlation is more pronounced for DePCEs.  322 
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 323 

Figure 12 PCE POP over AMT by EPC 324 

As a further investigation, we explored PD quantiles against EPC and AMT in different seasons (Figure 325 

13). Three PD percentiles, 50%, 75% and 95%, are included. The relationships represented by the local 326 

regression lines are colored by season. Vertically, similar to the results presented in Figure 8, PD 327 

percentiles increases as the EPC drops, especially in DePCE regions. This generally holds for all PD 328 

percentiles and seasons. Horizontally, PD seems to vary greatly depending on the AMT, with an 329 

amplified magnitude on high percentile categories (75% and 95% quantiles). For intensive 330 

(500hPa~2000hPa) and non-intensive (0hPa~500hPa) InPCEs, the all-season dash lines reflect the overall 331 

relationship between PD and AMT since seasonality is not significant. When AMT is lower than 10°C, PD 332 
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stays small. At temperatures above 10°C, non-intensive InPCE PD starts to increase slightly with AMT in 333 

the PD percentiles of 95%. This increase is amplified in intensive InPCEs for all PD quantiles, as shown in 334 

Figure 13, but delayed to 22°C, which almost exclusively represents summertime events. It should be 335 

noted that this amplification could be caused by the limited sample size (n = 40 for 23°C~26°C) at the 336 

corresponding AMT range and thus may not be reliable.   337 

For DePCE, seasonality is more pronounced in high PD percentiles (75% and 95%) and under intensive 338 

EPC conditions. When combined with the density graph from Figure 8, non-intensive (-500hPa~0hPa) 339 

DePCEs occur more frequently than other EPC categories and thus are more important in the 340 

investigation of how PD responds to PCEs and AMT. Although not all pronounced, non-intensive 341 

DePCEs generate more precipitation when AMT is higher, obvious for PD in the 95th percentile. This 342 

trend for non-intensive DePCEs is stronger than for non-intensive InPCE in a similar AMT range. The 343 

trends for all seasons have a dropping tail for high AMTs, which could be due to shrinking sample sizes. 344 

It could also imply that extreme events (95%) are more influenced by temperature and will likely be more 345 

affected by climate change than regular events, a finding that is supported by other researchers (Allen 346 

and Ingram 2002, Trenberth, Dai et al. 2003, Allan and Soden 2008, Giorgi, Im et al. 2011).  347 

Since PD is negatively associated with EPC, intensive (-2000hPa~-500hPa) DePCEs contain many extreme 348 

events. Seasonality is also more differentiable for intensive DePCEs. A monotonic positive trend between 349 

PD and AMT can be observed in fall. In winter, PD increases when the AMT is less than 0°C, and 350 

decreases for warmer temperatures. In spring, PD (except in the 95% percentile) does not obviously 351 

change until AMT is greater than 10°C. Summer shows a general monotonic decrease in PD as AMT 352 

increases. This is consistent with Shaw, Royem et al. (2011)’s findings in the NE, USA, suggesting that 353 

extreme precipitation events show a decrease in PD after 25°C during the summer.   354 
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The relationship between PD and AMT is important in the context of downscaling precipitation based on 355 

GCM temperature projections, the motivation for this study. AMT could generally indicate the moisture 356 

holding capacity and associated non-extreme PD trend of the CC relationship. However, at finer temporal 357 

scale or for a specific precipitation event, precipitation should be more physically related to hourly 358 

temperature (Panthou, Mailhot et al. 2014, Peleg, Marra et al. 2018). Moreover, pressure change, as a 359 

driver of precipitation investigated in this study, could impact on PD more directly than temperature and 360 

is worth to further explored. 361 
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 362 

Figure 13 Seasonal relationship between PD, AMT and EPC in different percentiles 363 

The impacts of both AMT and EPC on precipitation characteristics (POP, PD and percentiles) in Figure 12 364 

and 13 quantify the precipitation change with climate. Ban, Schmidli et al. (2015) suggest future climate 365 

may not be represented by the statistics derived from present using CC-related results. In this study, it 366 

might be true for the trends of precipitation characteristics in the extreme situation (e.g. an AMT or an 367 

EPC not seen in the historical data, or a local scale summer convection system only shown in the point 368 
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source data in terms of pressure changes but not precipitation). However, the analysis in this study is not 369 

statistical based. Although the intensity of different precipitation types may vary due to divergent 370 

thermodynamic conditions across different areal, seasonal and climate conditions (Panthou, Mailhot et al. 371 

2014, Peleg, Marra et al. 2018), pressure change as a physical requirement of  precipitation formation, 372 

described in this study, is independent of global warming. Thus, qualitatively, the dependences between 373 

EPC, PD and AMT will be generally held. Meanwhile, the analysis results, for observed climate, may 374 

have lower confidence under climate change, especially for local convection events, because a) the sample 375 

size of such events is underestimated in the historical data collected by point sources, such as climate 376 

stations in this study; b) the trajectory and effective area of precipitation events could change in future 377 

climate (Peleg, Marra et al. 2018).  378 

5. Conclusion 379 

We investigated the possibility of associating hourly precipitation / pressure data with AMT data as a 380 

preliminary analysis for generating a non-stationary, non-parametric, stochastic precipitation generator 381 

conditioning GCM monthly temperature output. Specifically, the results of this analysis answer the 382 

following two questions: 1) how PD and POP change with EPC during different types of PCE and 2) how 383 

the PD and POP of specific PCEs respond to AMT.  384 

Precipitation is formed by the cooling of moist air, typically due to vertical lifting. Physically, this lifting 385 

results in reduced sea-level air pressure prior to precipitation events. This research reveals that both POP 386 

and PD are highly correlated to PCEs. It provides a more physically reliable strategy by importing 387 

pressure change for stochastic precipitation generation, either parameterized statistical type or non-388 

parametric resampling type, to model precipitation.  The dependence of precipitation characteristics (POP, 389 

PD and percentiles) on AMT and EPC (Figure 12 and 13) could also enable stochastic precipitation 390 
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generations to incorporate more reliable GCM AMT projections in generating non-stationary situations. 391 

For this reason, we propose a stochastic precipitation generator for generating PCE sequences 392 

conditionally, using the corresponding precipitation as an output.  393 

Since the relationship between PCE and precipitation is derived from the physical precipitation formation 394 

mechanism, this kind of stochastic precipitation generator represents a much stronger and more reliable 395 

conceptual basis on which to build a model, as compared to those models barely relying on statistical 396 

assumptions. Moreover, because PCE is more strongly related to precipitation formation than coarser 397 

temporal scale temperature (e.g. monthly), it could be a reliable method for downscaling precipitation 398 

from GCM AMT projections, which are currently more trustworthy than GCM precipitation projections. 399 

Such a stochastic precipitation generator could be built by sampling PCE-associated hourly precipitation 400 

series from historical observations, and by adjusting for GCM predicted monthly temperatures. 401 

Specifically, by employing non-parametric method (Lall, Rajagopalan et al. 1996, Lall and Sharma 1996, 402 

Rajagopalan and Lall 1999), AMT projections from GCMs would be used as a reference to determine a 403 

pool of candidate PCEs under similar AMTs (i.e. a range of 6°C within which POP seasonal changes occur, 404 

as shown in Figure 11), similar to the moving window method (Rajagopalan, Lall et al. 1996). A 405 

secondary paper, specifically describing such a non-stationary non-parametric stochastic precipitation 406 

generator, will be published. 407 

In all, this paper suggests a means of generating long, continuous, synthetic precipitation series from 408 

scaled-down GCM AMT projections. These series could then be used for a variety of climate change 409 

model applications, such as hydrologic and hydraulic modeling, water resource modeling, agriculture 410 

modeling.  411 
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